شناسایی شایستگی‌های حرفه‌ای دیجیتالی معلمان در زمینه کاربرد هوش مصنوعی در آموزش

نوع مقاله : مقاله پژوهشی

نویسندگان

1 تحقیقات آموزشی، دانشکده روان شناسی و علوم تربیتی، دانشگاه خوارزمی، تهران،ایران.

2 دانشیار، گروه برنامه ریزی درسی، دانشکده روانشناسی و علوم تربیتی، دانشگاه خوارزمی، تهران، ایران

3 استادیار، گروه تکنولوژی آموزشی، دانشکده روانشناسی و علوم تربیتی، دانشگاه خوارزمی، تهران، ایران

چکیده

هدف: برنامه‌ریزی موثر آموزشی برای استفاده از فناوری‌های نوظهور مانند هوش مصنوعی نیازمند شناسایی و توسعه شایستگی‌های حرفه‌ای معلمان است. این شایستگی‌ها شامل نگرش‌ها، دانش و مهارت‌ها برای آموزش و بازخورد موثر می‌باشد. این مطالعه به ارزیابی شایستگی‌های دیجیتالی معلمان در زمینه هوش مصنوعی و پیشنهاد راهکارهایی برای برنامه‌ریزی آموزشی می‌پردازد.
روش‌شناسی: این پژوهش با رویکرد کیفی و روش مطالعه موردی انجام شد. محیط پژوهش شامل 21 نفر از معلمان، اساتید و خبرگانی از شهرهای مشهد و تهران بودند که از هوش مصنوعی در آموزش استفاده می‌کردند و با محیط کلاس آشنا بودند که با روش‌ نمونه‌گیری گلوله‌برفی انتخاب شدند. داده‌ها از طریق مصاحبه عمیق نیمه ساختار‌یافته جمع‌آوری و با استفاده از کدگذاری باز، محوری و انتخابی تحلیل شدند.
یافته‌ها: این مطالعه نشان داد که ادغام هوش مصنوعی در آموزش نیازمند توسعه هشت شایستگی کلیدی توسط معلمان است: مهارت‌های آموزشی، ویژگی‌های تحول‌آفرین، دانش نظری، مهارت‌های عملی، خودانگیزشی، درک فناوری، تعامل بین‌نسلی و تحلیل داده‌ها. برای بهره‌برداری کامل از مزایای هوش مصنوعی، معلمان باید فرصت‌ها و چالش‌های آن را شناسایی کنند. چهار فرصت کلیدی شناسایی شد: تولید ایده، خلق محتوا، بهبود فرآیندهای آموزشی و افزایش کارایی در زمان و هزینه‌ها. در عین حال، هشت چالش شامل پرورش تفکر انتقادی، حفظ هویت آموزشی، مسائل دسترسی، پاسخگویی، نگرانی‌های اجتماعی، حریم خصوصی و مشکلات فنی است. این مطالعه نیاز به اقدام در شش حوزه را برجسته می‌کند: آموزش معلمان، برتری، زیرساخت، آموزش خلق محتوا، توسعه منابع و بسته‌های پشتیبانی.
نتیجه‌گیری و پیشنهادها: نتایج این پژوهش بر ضرورت برنامه‌ریزی جامع برای توسعه شایستگی‌های دیجیتالی معلمان تأکید دارد. شناسایی شایستگی‌ها، فرصت‌ها، و چالش‌های مرتبط با هوش مصنوعی، به سیاست‌گذاران و برنامه‌ریزان آموزشی کمک می‌کند تا راهبردهای مؤثری برای یکپارچه‌سازی این فناوری در نظام آموزشی طراحی کنند. براین‌اساس پیشنهاد می‌شود برنامه‌های آموزشی معلمان بر اساس یافته‌های این پژوهش بازنگری و به‌روزرسانی شوند تا امکان بهره‌گیری حداکثری از هوش مصنوعی در آموزش فراهم گردد. 
نوآوری و اصالت: این مطالعه قابلیت‌های دیجیتال معلمان در زمینه هوش مصنوعی را شناسایی کرده و فرصت‌ها و چالش‌های مرتبط با آن را تجزیه و تحلیل می‌کند و چارچوبی برای برنامه‌ریزی آموزشی ارائه می‌دهد که مهارت‌ها را تقویت کرده و استراتژی‌هایی برای ادغام هوش مصنوعی در آموزش پیشنهاد می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identifying digital professional competencies of teachers in the field of artificial intelligence application in education.

نویسندگان [English]

  • Ameneh Ghodrati 1
  • Marjan kian 2
  • Yousef Mahdavinasab 3
1 Educational Research , Faculty of Psychology and Educational Sciences, Kharazmi University, Tehran, Iran.
2 Associate Professor, Department of Curriculum Planning, Faculty of Psychology and Educational Sciences, Kharazmi University, Tehran, Iran.
3 Assistant Professor, Department of Educational Technology, Faculty of Psychology and Educational Sciences, Kharazmi University, Tehran, Iran
چکیده [English]

Aim: Artificial Intelligence (AI), as one of the most significant branches of information technology, has brought about a fundamental transformation in e-learning. However, the use of this technology in higher education faces several challenges. Therefore, this research explores the barriers and challenges to the implementation of AI in the higher education system.
Methodology: This study was conducted using a qualitative, grounded theory approach. Data were collected through interviews with 14 educational technology experts, and data analysis was carried out using open, axial, and selective coding.
 Results: The data analysis led to the identification of six main categories and sixteen subcategories. The key challenges included a lack of advanced equipment, internet filtering, and slow speeds; cultural barriers such as resistance to change, a lack of clear regulations, and weak oversight in legal aspects; a shortage of specialised personnel; and concerns about AI's impact on traditional jobs. Additionally, national, international, familial, and educational factors also influenced the process. Solutions for overcoming these barriers include strengthening infrastructure and offering educational programs for students. The consequences of these challenges may include the widening of the digital divide, limitations on economic growth, and weakened innovation.
Conclusions and suggestions: To facilitate the implementation of AI in higher education, it is recommended that educational planning include the enhancement of infrastructure, development of specialised courses, attitude changes through awareness programs, the formulation of supportive regulations, and the expansion of national and international collaborations.
 Innovation and originality: This research, by analysing the cultural, infrastructural, and regulatory barriers to AI implementation in higher education, offers practical solutions to facilitate the adoption of this technology through educational planning.

کلیدواژه‌ها [English]

  • Digital Competencies of Teachers
  • Artificial Intelligence in Education
  • Technology in Educational Planning
Adıgüzel, T., Kaya, M. H., & Cansu, F. K. (2023). Revolutionizing education with AI: Exploring the transformative potential of ChatGPT. Contemporary Educational Technology. https://doi.org/10.30935/cedtech/13152
Ahmadi, S., Tahmasbzadeh, D., & Mirarab Razavi, R. (2024). Analysis of opportunities and challenges of AI-based personalized learning in Iranian higher education. Journal of Educational Planning Studies, 13(26), 7-33. https://doi.org/10.22080/eps.2025.28091.2292 [In Persian].
Bani Asadi, A. (2024). From unexpected encounters with artificial intelligence in university classrooms to deep reflection on its growing presence in higher education. Journal of Educational Planning Studies, 13(25), 92-111. https://doi.org/10.22080/eps.2024.27632.2274 [In Persian].
Chen, X., Xie, H., Zou, D., & Hwang, G. J. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 100002. https://doi.org/10.1016/j.caeai.2020.100002
Chen, X. (2024). A Phenomenological Study of Teachers' Perception of Professional Development Sessions Focused on Artificial Intelligence: Utilizing the TPACK Framework to Address the Professional Development Needs of Teachers. Doctoral dissertation, Pepperdine University of  United States of America.
Chiu, T. K., Falloon, G., Song, Y., Wong, V. W., Zhao, L., & Ismailov, M. (2024). A self-determination theory approach to teacher digital competence development. Computers & Education, 214, 105017. https://doi.org/10.1016/j.compedu.2024.105017
Chiu, T. K., Xia, Q., Zhou, X., Chai, C. S., & Cheng, M. (2023). Systematic literature review on opportunities, challenges, and future research recommendations of artificial intelligence in education. Computers and Education: Artificial Intelligence, 4, 100118. https://doi.org/10.1016/j.caeai.2022.100118
Davis, C., Bush, T., & Wood, S. (2024). Artificial intelligence in education: Enhancing learning experiences through personalized adaptation. International Journal of Cyber and IT Service Management, 4(1), 26-32. https://doi.org/10.34306/ijcitsm.v4i1.146
Dieterle, E., Dede, C., & Walker, M. (2024). The cyclical ethical effects of using artificial intelligence in education. AI & society, 39(2), 633-643. https://doi.org/10.1007/s00146-022-01497-w
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). Opinion Paper:“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642
Falloon, G. (2020). From digital literacy to digital competence: the teacher digital competency (TDC) framework. Educational technology research and development, 68(5), 2449-2472. https://doi.org/10.1007/s11423-020-09767-4
Galindo-Domínguez, H., Delgado, N., Losada, D., & Etxabe, J. M. (2024). An analysis of the use of artificial intelligence in education in Spain: The in-service teacher’s perspective. Journal of Digital Learning in Teacher Education, 40(1), 41-56. https://doi.org/10.1080/21532974.2023.2284726
Ghodrati, A., Kian, M., & Mahdavi-Nasab, Y. (2024). The Impact of Artificial Intelligence in Education from the Past to the Future. In Proceedings of the First National Conference on Artificial Intelligence in Education and Learning (pp. 1264-1269). Tehran: Allameh Tabatabai University Press [In Persian].
Heine, S., Krepf, M., & König, J. (2023). Digital resources as an aspect of teacher professional digital competence: One term, different definitions–a systematic review. Education and Information Technologies, 28(4), 3711-3738. https://doi.org/10.1007/s10639-022-11321-z
Hopcan, S., Polat, E., Ozturk, M. E., & Ozturk, L. (2023). Artificial intelligence in special education: A systematic review. Interactive Learning Environments, 31(10), 7335-7353. https://doi.org/10.1080/10494820.2022.2067186
Howard, S. K., Tondeur, J., Ma, J., & Yang, J. (2021). What to teach? Strategies for developing digital competency in preservice teacher training. Computers & Education, 165, 104149. https://doi.org/10.1016/j.compedu.2021.104149
Huang, X. (2021). Aims for cultivating students’ key competencies based on artificial intelligence education in China. Education and Information Technologies, 26(5), 5127-5147. https://doi.org/10.1007/s10639-021-10530-2
Kamalov, F., Santandreu Calonge, D., & Gurrib, I. (2023). New era of artificial intelligence in education: Towards a sustainable multifaceted revolution. Sustainability, 15(16), 12451. https://doi.org/10.3390/su151612451
Kian, M. (2019). A Comparative Study of Information and Communication Technology Programs in the General Education Period of the Educational Systems of Australia, Finland, and Iran. Iranian Journal of Comparative Education, 2(3), 383-406. doi: 10.22034/ijce.2020.103834 [In Persian].
Mao, J., Chen, B., & Liu, J. C. (2024). Generative artificial intelligence in education and its implications for assessment. TechTrends, 68(1), 58-66. https://doi.org/10.1007/s11528-023-00911-4
Martin, F., Zhuang, M., & Schaefer, D. (2023). Systematic review of research on artificial intelligence in K-12 education (2017–2022). Computers and Education: Artificial Intelligence, 100195 https://doi.org/10.1007/s43545-022-00425-5
Ng, D. T. K., Leung, J. K. L., Su, J., Ng, R. C. W., & Chu, S. K. W. (2023). Teachers’ AI digital competencies and twenty-first century skills in the post-pandemic world. Educational technology research and development, 71(1), 137-161. https://doi.org/10.1007/s11423-023-10203-6
Norhagen, S. L., Krumsvik, R. J., & Røkenes, F. M. (2024, April). Developing professional digital competence in Norwegian teacher education: A scoping review. In Frontiers in Education (Vol. 9, p. 1363529). Frontiers Media SA. https://doi.org/10.3389/feduc.2024.1363529
OECD. (2019). An OECD Learning Framework 2030. The Future of Education and Labor, 23-35. https://doi.org/10.1007/978-3-030-26068-2_3
Park, W., & Kwon, H. (2024). Implementing artificial intelligence education for middle school technology education in Republic of Korea. International journal of technology and design education, 34(1), 109-135. https://doi.org/10.1007/s10798-023-09812-2
Porjamshidi, M., & Mozafari, O. (2024). The application of artificial intelligence technologies in STEAM education programs. Journal of Educational Planning Studies, 13(26), 34-56. https://doi.org/10.22080/eps.2025.28359.2303 [In Persian].
Rajabi, M. , Ghasemtabar, A. and Mahdavi Nasab, Y. (2022). Investigating the relationship between teachers' digital literacy and their views on the usability of Student Educational Network (SHAD software). Technology of Education Journal (TEJ), 16(4), 695-706. doi: 10.22061/tej.2022.8462.2673  [In Persian]. 
Redecker, C. (2017). European Framework for the Digital Competence of Educators: DigCompEdu. JRC Science  for Policy Report, Publications Office of the European Union.   https://doi.org/10.2760/159770
Wang, X., Pang, H., Wallace, M. P., Wang, Q., & Chen, W. (2024). Learners’ perceived AI presences in AI-supported language learning: A study of AI as a humanized agent from community of inquiry. Computer Assisted Language Learning, 37(4), 814-840. https://doi.org/10.1080/09588221.2022.2056203
Xu, M., David, J. M., & Kim, S. H. (2023). The fourth industrial revolution: Opportunities and challenges for artificial intelligence in education. Computers & Education, 198, 104785. https://doi.org/10.1016/j.compedu.2023.104785
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education–where are the educators?. International Journal of Educational Technology in Higher Education, 16(1), 1-27.
Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025.  https://doi.org/10.1016/j.caeai.2021.100025